Grado 6 - Periodo 2

Geometría

Temas:

Polígonos: Elementos de un polígono - Clasificación de polígonos - Polígonos regulares e irregulares

Triángulos: Tipos de triángulos según sus lados y ángulos - Propiedades y clasificación - Perímetro y área de triángulos


DBA 6. Representa y construye formas bidimensionales y tridimensionales con el apoyo en instrumentos de medida apropiados. 

Estándar básico de competencia: 

  • Represento objetos tridimensionales desde diferentes posiciones y vistas.

  • Clasifico polígonos en relación con sus propiedades. 

Conocimientos previos: Manejo del transportador y el compás


TRIÁNGULOS

Un triángulo se define como un polígono, es decir, una figura geométrica plana compuesta por tres lados, tres ángulos y tres vértices. Entre los tres ángulos, suman 180º. Los vértices son los puntos comunes que hay a cada par de lados. 

1. TIPOS DE TRIÁNGULOS SEGÚN SUS LADOS Y ÁNGULOS

1.1. SEGÚN SUS LADOS

Según sus lados podemos distinguir tres tipos de triángulos:

Triángulo equilátero: tiene sus tres lados iguales, todos miden lo mismo.

El triángulo isósceles: tiene dos lados iguales y uno distinto.

El escaleno: tiene los tres lados diferentes, es decir, de distinta longitud.

Puedes comprobarlo en la siguiente imagen.

1.2. SEGÚN SUS ÁNGULOS

Existen tres tipos de triángulos según sus ángulos:

Triángulo rectángulo: en él dos de sus lados forman un ángulo recto, o lo que es lo mismo, tiene un ángulo de 90º.

Triángulo acutángulo: cuando todos sus ángulos miden menos de 90º, es decir, son ángulos agudos.

El triángulo obtusángulo: cuando dos de sus lados forman un ángulo obtuso, o lo que es lo mismo, cuando tiene un ángulo de más de 90º.

A continuación puedes verlo en la imagen.

Analiza con mucha atención la siguiente tabla donde se resumen las características de los triángulos

Te invito a observar el siguiente video para reforzar el tema:

Actividad 1: 

1. Identifica los siguientes triángulos, a partir de las características que se describen

PROPIEDADES DE LOS TRIÁNGULOS

Los triángulos son el polígono con el número más bajo de lados y ángulos, motivo por el cual se consideran como figuras bastante básicas, pero en realidad tienen numerosas propiedades.

Aquí te dejamos un repaso a las principales propiedades de los triángulos:

  1. En primer lugar, los triángulos siempre tienen

    tres ángulos interiores que, si los sumamos, siempre da 180º.

2. Es el único polígono que no posee diagonales.

3. Todos los polígonos que no son triángulos se pueden subdividir en este primer tipo. Es decir, un pentágono se puede subdividir en triángulos, también un hexágono puede subdividirse en triángulos, etc. La manera más sencilla de hacerlo es trazando las diagonales del polígono en cuestión.

4. Por lo menos dos de los tres ángulos de un triángulo son agudos siempre.

Gracias a la trigonometría, podemos aplicar las propiedades de los triángulos al estudio de los demás polígonos porque, como ya hemos dicho, cualquier polígono puede dividirse en triángulos.

Es importante recordar que hay distintos tipos de triángulos, por lo que las propiedades pueden ser específicas. 

Por ejemplo, el triángulo equilátero tiene los tres lados de la misma longitud y los tres ángulos de la misma amplitud (60º). Por otro lado, el triángulo rectángulo tiene una propiedad muy especial que es que puede aplicarse el Teorema de Pitágoras, que relaciona sus tres lados (hipotenusa al cuadrado es igual a la suma de cada uno de los catetos al cuadrado). 

En esta gráfica resumimos las propiedades:

PERÍMETRO Y ÁREA DE TRIÁNGULOS

1. Perímetro

El perímetro de un triángulo es igual a la suma de sus tres lados

2. Área

El área de un triángulo es igual a base por altura partido por 2 .

La altura es la recta perpendicular trazada desde un vértice al lado opuesto (o su prolongación).

El área de un triángulo equilátero, como en todo triángulo, será un medio de la base (a) por su altura. El triángulo equilátero tiene los tres lados iguales. En este caso, el área viene definida por la siguiente fórmula: 

¿Cómo se obtiene?

El área de un triángulo equilátero se obtiene como el producto de la base (el lado a) por la altura (h) dividido por dos (Nota: ¿por qué el área de un triángulo es un medio del producto de la base por la altura?).

Veamos cual es la altura del triángulo equilátero.

Ésta se puede calcular a partir del teorema de Pitágoras. Los lados a, a/2 y h forman un triángulo rectángulo. Los lados a/2 y h son los catetos y a la hipotenusa.

Aplicando el teorema de Pitágoras: 

Obtenemos que la altura (h) del triángulo equilátero es:  

Ahora, aplicando que el área es un medio del producto de la base (a) por la altura (h): 

Y llegamos a que la fórmula del área del triángulo equilátero es: 

Siendo a el lado del triángulo

Ejemplo1 triángulo equilátero:

Sea un triángulo equilátero con todos los lados iguales de longitud a=5 cm.

¿Cuál es su área?

Según la fórmula anterior, quedaría de la siguiente manera:

Ejemplo2 triángulo isósceles:

Hallar el área del siguiente triángulo

Ejemplo3 triángulo rectángulo

Calcular el área del triángulo rectángulo cuyos catetos miden 3 y 4 cm:

Puedes ver la tabla de fórmulas del área del triángulo. Dependiendo del tipo de triángulo puedes necesitar un elemento (triángulo equilátero), dos (base y altura) o tres (siempre que no sean los tres ángulos. 

Actividad 2.

Contesta en tu cuaderno:

1. Calcula el o los ángulos que faltan en los siguientes triángulos (tienes que dibujarlo con un transportador):

  • Un triángulo con un ángulo de 65º y otro de 15º.
  • Un triángulo rectángulo con un ángulo de 20º.
  • Un triángulo equilátero.

2. ¿Es posible que un triángulo sea equilátero y a la vez rectángulo? Justifica tu respuesta.

3. ¿Cuántas diagonales tiene un triángulo

4. Halla y selecciona el resultado correcto de los siguientes ejercicios:

HETEROEVALUACIÓN: La valoración del trabajo desarrollado en la presente guía se realizará de la siguiente forma:

Saber Hacer (50%):

a. Elaboración y entrega de las actividades propuestas.

b. Ejercicios de Prueba.

Saber (25%):

a. Prueba Bimestral

Ser - Convivir (25%):

a. Normas de Convivencia.

b. Responsabilidad y Cumplimiento en la entrega de trabajos.

c. Seguimiento a las instrucciones dadas por el docente.

d. Autoevaluación y Coevaluación.

AUTOEVALUACIÓN Y COEVALUACION: Onceava Semana del Periodo

Transcribir a hojas de block cuadriculado las siguientes tablas, marcar con una X en la casilla de la valoración correspondiente a los siguientes criterios y luego totalizar cada columna. Se debe realizar con la máxima sinceridad:

https://docs.google.com/forms/d/e/1FAIpQLSe8K6emBxx7juVipbyPzTOGq_10Rg7a2XDDfxaaipio4DKZTA/viewform?usp=pp_url 

ACÁ PUEDES DESCARGAR LA GUÍA

ACUERDOS PEDAGÓGICOS

RÚBRICA

1. Rúbrica para polígonos:

2. Rúbrica para triángulos: